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ANTIFERROMAGNETIC CORRELATIONS IN A POLAR
MODEL FOR OXIDE SUPERCONDUCTORS

N.M.Plakida, V.Y.Yushankhaj

A planar tight-binding system of Cu(3d?) and O(2p6) electrons
is considered in the framework of a polar model for metals. A second-
quantized Hamiltonian is derived as a series expansion in powers of
a small overlapping parameter, ¢ S << 1, for d(x2 -yz) and p_ -,
p. -orbitals. A generalized two-sublattice Hubbard model is obtained
and treated perturbatively to the fourth order in ¢ S. Various pertur-
bative contributions are considered as effective spin Hamiltonians.
Some comments on recent suggestions for the superconducting elect-
ron pairing due to antiferromagnetic Cu(3d) — O(2p) exchange are
given.

The investigation has been performed at the Laboratory of Theore-
tical Physics, JINR.

AntudeppoMarHuTHbie KOPPEJIALUH B NOJAPHON MO AN
OKCHIHBIX CBEPXNPOBOJHHKOB

H.M.Inakunaa, B.10.M0watixai

B pamkax nonspHoit Mogenu MeTanna H3y4aeTCcsd AByMepHas
CHCTEMa C CWIBHOM CBA3bl0 [nA iekTpoHoB Cu(3d9) u 0(2pe).
B1opMiHOKBaHTOBaHHBIA JNEKTPOHHbIH TaMWJIbTOHHAH [PECTaBlIeH
B BHIE pAfa MO CTENEHAM Majoro napaMeTpa mepekpuitusd, ¢S <<I,
ma d(x2-y2) u P, P, -opbuTasne. IMonyuena obobGiennas aBYy-
MepHas MOIenb Xaﬁﬁapna{ KOTOpas HCCrielyeTCs B paMKaX oMneparop-
HOH (OPMBI TEOPHH BO3MYILEHHI C TOYHOCTHIO 10 YETBEPTOro Mopsil-
Ka Mo €S. YCTaHOBNEHO COOTBETCTBHE MeXAy Pa3NHYHBIMH BKJIala-
MH TE€OPHH BO3MYLIEHHHA ¥ CNIMHOBBIMHM raMwibToHHaHaMM. OGcyxna-
I0TCA MpesIOKEHHBbIE HEJABHO MEXaHH3IMbl CBEPXNPOBOMAUIErO Cra-
PHBaHHA 3NIEKTPOHOB 3a cuer aHTHdeppomaruuToro Cu(3d) — O(2p)
obmena.

PaGora BbinonHeHa B JlaGopatopun Teoperudeckoit ¢usnxku OUAH.

The existence of well-separated CuO, layers is a common and
prominent structure peculiarity of new high-T , superconductors. Now
there is no doubt that it is just these layers that are the source of super-
conducting behaviour. We believe that the key electronic and magnetic
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properties of oxide superconductors can be understood in terms of
a two-dimensional tight-binding model which includes only copper
d-orbitals of (x2-y?) type overlapping oxygen p_-, p_ -orbitals on
a square network of Cu — O bonds. The objective of this paper is to
derive an effective electron Hamiltonian for that planar system and to
make its preliminary analysis. To carry it out, we follow the approach
suggested by Bogolubov long ago’!.2/ in developing the so-called
polar model of metals’3/ . This approach allows us, first, to represent
the second-quantized Hamiltonjan as an expansion in powers of a small
overlapping parameter, 8 << 1, of the Cu — O bond and, second,
to employ a perturbation scheme in the operator form taking into
account a strong degeneracy of the electron system examined. The
general expressions derived will serve as a starting point for further
studies of electronic and magnetic properties of layered superconducting
compounds.

Consi_gier a planar system with Cu ions at the square lattice points
f =na+mb , and with two O ions per unit cell at the positions g =
=f+7, (F=a/2, b/2 ). Let H, be the one-particle electron Hamilto-
nian of the system. Then starting from the ionic Cyu2+ (d9) state at
an f-site and solving the Schrddinger equation }(OI‘I‘(.)‘)( r)> =
=6 | ‘P:J\) (f) > for d-electrons one finds that A= (!2 -y2) is

the d-orbital with the highest atomic energy & (s%-y%) E; and thus
half-fulled (see_l e.g.’Y). Further one adopts the fact that the wave
function ¥5(r) of the A=(x2-y%type is overlapped t}(n;c;ugh the
~ (Pdo)-bond with four nearest oxygen orbitals: two of them @',

are of the p -t d (y) r ”wi'h( :

P -type and two o?i P2 (r) are of the py-type. ese
orbitals are of equal energy < :ia) | K olt)(f))aEp and each of
Cu — O bonds are characteri d by thé same overlap integral
V(OO (F)>28=¢8" <1. A chemical bond comen.
red is largely ionic and its covalency degree is measured by the matrix

element <¥ (') | ¥, | o:fl (F)>=¢8V-e3(E; +E, ) /2. All other
atomic orbitals are assumed to exhibit much smaller overlaps for sym-
metry reasons and disregarded.

To obtain the second-quantized Hamiltonian of the system, we
follow/1/ and construct the set of orthogonalized atomic functions
‘P?(?) , 94)(T)  instead of the just introduced nonorthogonali-
zed orbitals 'IF,*(? ) L o) @y | They can be written to the second
orderin (¢S) as &

IT';(?) e +%¢2s"‘) ¥ (1) --;qs T ‘¢§+B;’,(?) + 1)

+
tr
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and possess the property <‘P—»(r ) )

duce the set of Ferrm—operators at’ (ap ) each of which creates
(destroys) an electron w1th a.spin o m a s%ate | P 4(r )y> if j —f and
in I(I) Y (r y> if j_ . Then the one-particle part of the electron
Hamiltonian to the second order in ¢S can be represented in the form

a) -
' (r)>=0. Now let us intro-

-‘\‘,-\

+€tfg 2 (ar S5 +h.C.)+

H=E.3 n_, +E_ 2 n
0 d P g
fo fo p 2.0 BO <L 50 f,o 8.0
(2)
2 +
+e2l:fr pX a’: a, +eto b2 a, a_ .,
77 f.0 t',o > 2, g.0 g.0
<t,t’>,0 <g,g’ >0

where <; , j_)> refers to neighbouring sites, and the hopping integrals
can be expressed in terms of the above defined quantities as etr =
-—eS[V (Eq +Ep y/72] » fty =€°S?[3/4E, +1/4E, - V] ,
Ety, =e28% [3/4Ep +1/4Eq -V1 . Proceedmg to ghe interaction
Hamiltonian one should consider the dependence of Coulomb matrix
elements

22,2, 3 3 > ¥ 2 ind nd
V(ij/i77) =fa°r [d't, ir(rt) lpf(rz) e /r12t,l/r,(l‘2) d;;,(rl)

on mutial electron site positions i R }’, i’ , f’ = ?, g . The main contri-
butions up to the second crder in ¢S are due to

v{Ai/ij) ~0(1),
VG735 ~V(i3/37) =5, if (j,i’) =n.n. or (i,i’)=n.n.,

VA7) VG w282, it (5,i")=nn.n. or({,i") =n.m.n.,
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V(EI/1757) ~e282, it (§.5") =n.n. and (i,i’) =n.n. .

Here n.n. and n.n.n. mean the nearest-neighbour and the next-to-nearest-
neighbour sites. As a result, the interaction Hamiltonian can be written as

0) @) @)
Hint =Kint +}(int +}(int; ’
o N
}(int) = i z V(_i'j.’/ij)n-» (n, , '8»_-*3 L)
2 -+ > , io jo ij oo
i,j:o,0
HO _ s vAiD (. -5,.5  )a a. .
Y e o’ i oo’ 1o jo
{:0,0°
2 > > > >
2w 3 VWi n., et a4
<?:).i-’>=n.n.n. lo fo jo
fioua” 3)
+'l§' 2 VA7) et at, a, a,
<{,7">=n.n o jo’ o i’
.<—’,j—)’>=n_n

0,0
The Hamiltogian (2), (3) has a very complicated form to be treated.
Further in this paper we r(_a)sj’:rict ourselves to the most strong on-site
Coulomb repulsion V(ii/ {i )=V4, . In this case the Hamiltonian
reduces to a generalized two-sublattice Hubbard model with hopping
terms being considered as a perturbation K - H=Hj +eH, +¢®H, ,
where

1
Hy=E;, X n, +E_ 3 n,+=V,$ n.n +
0 d -»> - d g >
fo fo P so 89 2 °p Mo f-o
L1y s n, n » H =t = (a*, a , +h.c.), (4)
2P 3o Eo g0 <fg>,0 o go
Hy, =t p at, a +t b at, a
2 ff g 2, 88 > >,
{ , ['4 o
<f,f'>,0 7 o <g.g’>,0 B7 &

We choose the parameters of the model to be such that, first, an initial
undoped state belongs to a manifold L of state vectors | B, (1 N, D >(undop.)
with single occupied f-sites and double occupied g-sites, i.e.
|¢0({Ni }) > (undop.)_ |¢o({N! =1, Ng =2}> and, second, doping
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creates holes at g-sites rather than at f-sites, i.e. | $,(IN, 1) >(dop. )
-|¢0({Nf =1, Ng_2 1 }>. This is true when (E, +V ) - Ed_g >0
and (Eq+V4) ~(E;j+ V)= Vd—§>0 To be more defmlte we as-
sume also that et czt“ , € t e <<Vq ,6,V;-& , and do not
constrain a value o% V_ . A similar model was proposed by Emery /5/
and investigated by several authors /8+7/

Now we are interested in the ground state and low-lying excited
states which clearly belong to the above-defined manifold L of single
occupied f-site states. Let us introduce the operator P projecting an
arbitrary state vector |¢> of the system onto L, i.e. P|¢>=]| by >
Note that HyP|¢>=EjP|¢> and thus the energy level E; is
strongly degenerated. In its turn the projection operator (1 - P) gives
highly excited, polar, states of the system separated from the E, -le-
vel by energies Vgr V4 = & and &. To remove the degeneracy men-
tioned, we find an effectlve Hamiltonian PHP which operates in the
L subspace, instead of initial H (from (4)). The operator form of pertur-
bation theory developed in ‘! =2/ permits us to obtain the following
expansion

PHP -PA P+ 3 ¢"PH,P. (5)

n=b

The problem will be treated to the fourth order in ¢ . Let us introduce
the operator R={( Hy-E ) " x(1-P) which involves the excited polar
states to the theory as virtual ones and write the necessary expressions

s n, +1v n, n, )P, (6)

(1) PHP-P(E, S n. +E .
) 0 (Bq = np +Bp o 2 P2 go E-0

t,o ‘9 g.0
(¢) PH P=PH P, (7)
(e2) PA,p-PH P+PHP P,

=(2)

. (8)
PH(VP - -PH,RH,P, PR} P=PH,P,

(e?) Pﬁ3P=Pﬁ(:)P+P};3(2)P.
(9)
Pﬁé‘)hmlRHlRHlP, PHSP P - —PH,RH, P - PH,RH, P,

(e PH,P- >: PP, (10)
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PH{P - -PH RH,RH,RH,P, PH{ P--PH,RH,P,
PES) P - pH, RH _RH,P

4 ©=PH,RHRHP, (10)
PH (VP - PH, RH RH, P + PH RH, RH P .

Below we follow /1 / and treat various perturbative contributions
(6)-(10) as exchange spin Hamiltonians. We present some principal re-
sults gained in this way without details.

One can see that PﬁlP = PﬁsP =0 holds both in the undoped
(N =1, Ng =2) and doped (N, =1, Ns = 2,1) system. Proceeding to
even terms let us start with the former case. Then one can get

Pﬁ;l)P=J_’._, S 8.,8.. (11)
fecr,g> ! 8 ~

, Here Jf, =2tfi /(Vq-&)and §1 is the spin_operator at an
i-th site. Since <¢ |8 |¢,>®ndop.) - 0 and PH P < 0, the
second order contribution c?oes not remove the spin degeneracy of
f -sites. The next approximation - ¢* yields

- ) ~2 s ng ~»
PHVPPHY Py +37, ) 3 8.8, (12)

- T
i
<t,t’>

, 4 2 ” 2 .
where Jo =2t /Y (Vy -&)° > 0, I =2ty / V, > 0; besides

fg
Pﬁ(f)P:I“ T (85,87 +87st ), (13)
<;’.;r> t t

where 1, =t? t, /(V;, -&)?and the final term is PH{YP - 0.
Thus, the behaviour of f-sites electron spins is governed by the aniso-
tropic Heisenberg Hamiltonian with exchange constants J 0 =3 +37
Jig =3 =3 +1y . In particular, concerning CuO, layers in the
La CuO, compound’8/ one may deduce that the parameters of the
model considered are such that they make an antiferromagnetic ground
state preferable.

Now let us turn to the doped system. The second-order contribu-

tion now gives more complicated Hamiltonian forms:
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~(1) Id r, g S
PH, 'P=(J Jv ) Z, 5385+
4 fs <f,g> t g
I, +17
+ _+
+ e T8 I P T e
’ +
<;.;£E> g+ B 4
Tt
- g b (n,a", a, +n_,fa+_, a, )+ (14)
4 t f
<f.geg’> ti g+ g gL 8
JI’
f + +
+ 28 2 (n—)fa-»a-a, +nr—va-y a-«»)o
> >
<f,8£8’> f gt g 1t + gy g
2) +
PH® p - s at, a,, .
2 &g 7, go g0 (15)
<g.,g >

Here Ji =2t%, /(Vy -6), I =2t%, /&, and <f,g' Lg’> implies
summation over pairs of g4 ¢  sites with a common intervening f-
site under summation too. Of course, one should keep in mind that
derived expressions (14), (15) are applicable in the L subspace where
N, =1, Ng = 2,1. The next fourth-order terms retain the spin forms
(12), (13) provided that a small doping causes a weak renormalization
of exchange constants. The derived expressions give us a starting point
for further studies of electronic and magnetic properties of layered
superconductors.

Emery /5/, treating this model (with eH, = 0) actually on a si-
milar perturbative basis, proposed a mechanism of superconducting
pairing of O(2p) holes through O(2p) - Cu(3d) exchange. We note that
the present formally strict approach excludes the virtual process un-
derlying the antiferromagnetic pairing mechanism proposed by Emery.
On the other hand, the qualitative suggestion made by Hirsh’® seems
to us very attractive. Hamiltonians (14), (15) and (12), (13) derived
in this paper may serve as a quantitative basis in developing this sug-
gestion.

The authors are greatly indebted to Academician N.N.Bogolubov
for helpful discussions.
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